
Lecture 38

Quantum Theory of Light

The quantum theory of the world is the culmination of a series intellectual exercises. It is often
termed the intellectual triumph of the twentieth century. One often says that deciphering
the laws of nature is like watching two persons play a chess game with rules unbeknownst to
us. By watching the moves, we finally have the revelation about the perplexing rules. But
we are grateful that, aided by experimental data, these laws of nature are deciphered by our
predecessors.

It is important to know that the quantum theory of light emerges alongside with this
quantum theory. This new quantum theory of light is intimately related to Maxwell’s equa-
tions as shall be seen. This new theory spawns the possibility for quantum technologies, one
of which is quantum computing. Others are quantum communication, quantum crytography,
quantum sensing and many more.

38.1 Historical Background on Quantum Theory

That light is a wave has been demonstrated by Newton’s ring phenomenon [20] in the eigh-
teenth century (1717) (see Figure 38.1). In 1801, Thomas Young demonstrated the double
slit experiment for light [270] that further confirmed its wave nature (see Figure 38.2). But
by the beginning of the 20-th century, one has to accept that light is both a particle, called
a photon, carrying a quantum of energy with a quantum of momentum, as well as a particle
endowed with wave-like behavior. This is called wave-particle duality. We shall outline the
historical reason for this development.
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452 Electromagnetic Field Theory

Figure 38.1: A Newton’s rings experiment that indicates the wave nature of light (cour-
tesy of [271]).

Figure 38.2: A Young’s double-slit experiment. Again, the interference pattern reveals
the wave nature of light (courtesy of [272]).

As mentioned above, quantum theory is a major intellectual achievement of the twentieth
century, even though new knowledge is still emerging in it. Several major experimental
findings led to the revelation of quantum theory of nature. In nature, we know that matter
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is not infinitely divisible. This is vindicated by the atomic theory of John Dalton (1766-
1844) [273]. So fluid is not infinitely divisible: as when water is divided into smaller pieces,
one will eventually arrive at water molecule, H2O, which is the fundamental building block
of water.

In turns out that electromagnetic energy is not infinitely divisible either. The electromag-
netic radiation out of a heated cavity would have a very different spectrum if electromagnetic
energy is infinitely divisible. In order to fit experimental observation of radiation from a
heated electromagnetic cavity, Max Planck (1900s) [274] proposed that electromagnetic en-
ergy comes in packets or is quantized. Each packet of energy or a quantum of energy E is
associated with the frequency of electromagnetic wave, namely

E = ~ω = ~2πf = hf (38.1.1)

where ~ is now known as the Planck constant and ~ = h/2π = 6.626 × 10−34 J·s (Joule-
second). Since ~ is very small, this packet of energy is very small unless ω is large. So it
is no surprise that the quantization of electromagnetic field is first associated with light, a
very high frequency electromagnetic radiation. A red-light photon at a wavelength of 700 nm
corresponds to an energy of approximately 2 eV ≈ 3×10−19J ≈ 75 kBT , (where kBT denotes
the thermal energy from thermal law, and kB is Boltzmann’s constant. This is about 25 meV
at room temperature.1) A microwave photon has approximately 1× 10−5 eV ≈ 10−2meV.

The second experimental evidence that light is quantized is the photo-electric effect [275].
It was found that matter emitted electrons when light shined on it. First, the light frequency
has to correspond to the “resonant” frequency of the atom. Second, the number of electrons
emitted is proportional to the number of packets of energy ~ω that the light carries. This
was a clear indication that light energy traveled in packets or quanta as posited by Einstein
in 1905.

This wave-particle duality concept mentioned at the beginning of this section was not new
to quantum theory as electrons were known to behave both like a particle and a wave. The
particle nature of an electron was confirmed by the measurement of its charge by Millikan in
1913 in his oil-drop experiment. (The double slit experiment for electron was done in 1927 by
Davison and Germer, indicating that an electron has a wave nature as well [270].) In 1924,
De Broglie [276] suggested that there is a wave associated with an electron with momentum
p such that

p = ~k (38.1.2)

where k = 2π/λ, the wavenumber. All this knowledge gave hint to the quantum theorists of
that era to come up with a new way to describe nature.

Classically, particles like an electron moves through space obeying Newton’s laws of mo-
tion first established in 1687 [277]. The old way of describing particle motion is known as
classical mechanics, and the new way of describing particle motion is known as quantum
mechanics. Quantum mechanics is very much motivated by a branch of classical mechanics
called Hamiltonian mechanics. We will first use Hamiltonian mechanics to study a simple
pendulum and connect it with electromagnetic oscillations.

1This is a number ought to be remembered by semi-conductor scientists as the size of the material bandgap
with respect to this thermal energy decides if a material is a semi-conductor at room temperature.
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38.2 Connecting Electromagnetic Oscillation to Simple
Pendulum

The theory for quantization of electromagnetic field was started by Dirac in 1927 [3]. In
the beginning, it was called quantum electrodynamics (QED) important for understanding
particle physics phenomena and light-matter interactions [278]. Later on, it became important
in quantum optics where quantum effects in electromagnetics technologies first emerged. Now,
microwave photons are measurable and, possibly, important in quantum computers. Hence,
quantum effects are important in the microwave regime as well.

Maxwell’s equations originally were inspired by experimental findings of Maxwell’s time,
and he beautifully put them together using mathematics known during his time. But Maxwell’s
equations can also be “derived” using Hamiltonian mechanics and energy conservation [279].
First, electromagnetic theory can be regarded as for describing an infinite set of coupled
harmonic oscillators. In one dimension, when a wave propagates on a string, or an electro-
magnetic wave propagates on a transmission line, they can be regarded as propagating on a set
of coupled harmonic oscillators as shown in Figure 38.3. Maxwell’s equations describe waves
travelling in 3D space due to the coupling between an infinite set of harmonic oscillators.
(In fact, methods have been developed to solve Maxwell’s equations using transmission-line-
matrix (TLM) method [280], or the partial element equivalent circuit (PEEC) method [195].)
In materials, these harmonic oscillators are atoms or molecules, but in vacuum they can be
thought of as electron-positron pairs (e-p pairs). Electrons are matters, while positrons are
anti-matters. Together, in their quiescent state, they form vacuum or “nothingness”. Hence,
vacuum can support the propogation of electromagnetic waves through vast distances: we
have received light from galaxies many light-years away.

Figure 38.3: Maxwell’s equations describe the coupling of harmonic oscillators in a 3D
space. This is similar to waves propagating on a string or a 1D transmission line, or a
2D array of coupled oscillators. The saw-tooth symbol in the figures represents a spring.
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The cavity modes in electromagnetics are similar to the oscillation of a pendulum in
simple harmonic motion. To understand the quantization of electromagnetic field, we start
by connecting these cavity-mode oscillations to the oscillations of a simple pendulum. It is
to be noted that fundamentally, electromagnetic oscillation exists because of displacement
current. Displacement current exists even in vacuum because vacuum is polarizable, namely
that D = εE where for vacuum, ε = ε0. Furthermore, displacement current exists because of
the ∂D/∂t term in the generalized Ampere’s law added by Maxwell, namely,

∇×H =
∂D

∂t
+ J (38.2.1)

Together with Faraday’s law that

∇×E = −∂B

∂t
(38.2.2)

(38.2.1) and (38.2.2) together allow for the existence of wave. The coupling between the two
equations gives rise to the “springiness” of electromagnetic fields.

Wave exists due to the existence of coupled harmonic oscillators, and at a fundamental
level, these harmonic oscillators are electron-positron (e-p) pairs. The fact that they are
coupled allows waves to propagate through space, and even in vacuum.

Figure 38.4: A one-dimensional cavity solution to Maxwell’s equations is one of the
simplest way to solve Maxwell’s equations. The oscillation of the electromagnetic fields
inside the cavity resembles the oscillation of a simple pendulum.

Simple Cavity Mode

To make the problem simpler, we look at a one dimensional cavity formed by two PEC
(perfect electric conductor) plates as shown in Figure 38.4. We assume source-free Maxwell’s
equations in between the plates and letting E = x̂Ex, H = ŷHy. Then (38.2.1) and (38.2.2)
become

∂

∂z
Hy = −ε ∂

∂t
Ex (38.2.3)

∂

∂z
Ex = −µ ∂

∂t
Hy (38.2.4)



456 Electromagnetic Field Theory

The above are similar to the telegrapher’s equations. We can combine them to arrive at

∂2

∂z2
Ex = µε

∂2

∂t2
Ex (38.2.5)

There are infinitely many ways to solve the above partial differential equation. But here, we
use separation of variables to solve the above by letting

Ex(z, t) = E0(t)f(z) (38.2.6)

Then we arrive at two separate equations that

d2E0(t)

dt2
= −ω2

l E0(t) (38.2.7)

and

d2f(z)

dz2
= −ω2

l µεf(z) (38.2.8)

where ω2
l is the separation constant. There are infinitely many ways to solve the above

equations. They are also eigenvalue equations with eigenvalues ω2
l and ω2

l µε. The general
solutions for (38.2.7) and (38.2.8) are that

E0(t) = E0 cos(ωlt+ ψ) (38.2.9)

f(z) = sin(klz) (38.2.10)

kl =
lπ

L
, l = 1, 2, 3, . . . , ωl =

lπ

L
c, l = 1, 2, 3, . . . (38.2.11)

These are the discrete resonant frequencies ωl of the modes of the 1D cavity.

The above solutions for Ex(z, t) in (38.2.5) can be thought of as the collective oscillations
of coupled harmonic oscillators forming the modes of the cavity. At the fundamental level,
these oscillations are oscillators made by electron-positron pairs. But macroscopically, their
collective resonances manifest themselves as giving rise to infinitely many electromagnetic
cavity modes. The amplitudes of these modes, E0(t) are simple harmonic oscillations.

The resonance between two parallel PEC plates is similar to the resonance of a trans-
mission line of length L shorted at both ends. One can see that the resonance of a shorted
transmission line is similar to the coupling of infnitely many LC tank circuits. To see this, as
shown in Figure 38.3, we start with a single LC tank circuit as a simple harmonic oscillator
with only one resonant frequency. When two LC tank circuits are coupled to each other, they
will have two resonant frequencies. For N of them, they will have N resonant frequencies. For
a continuum of them, they will be infinitely many resonant frequencies or modes as indicated
by Equation (38.2.11).

What is more important is that the resonance of each of these modes is similar to the
resonance of a simple pendulum or a simple harmonic oscillator. For a fixed point in space,
the field due to this oscillation is similar to the oscillation of a simple pendulum.
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Simple Pendulum

As we have seen in the Drude-Lorentz-Sommerfeld mode, for a particle of mass m attached
to a spring connected to a wall, where the restoring force is like Hooke’s law, the equation of
motion of a pendulum by Newton’s law is

m
d2x

dt2
+ κx = 0 (38.2.12)

where κ is the spring constant, and we assume that the oscillator is not driven by an external
force, but is in natural or free oscillation. The above equation is homorphic/analgous to
(38.2.7). We can see that x⇔ E0 relates the two equations. By letting2

x = x0e
−iωt (38.2.13)

the above becomes

−mω2x0 + κx0 = 0 (38.2.14)

Again, a non-trivial solution is possible only at the resonant frequency of the oscillator or
that when ω = ω0 where

ω0 =

√
κ

m
(38.2.15)

This is the eigensolution of (38.2.12) with eigenvalue ω2
0 .

38.3 Hamiltonian Mechanics

Equation (38.2.12) can be derived by Newton’s law but it can also be derived via Hamiltonian
mechanics as well. Since Hamiltonian mechanics motivates quantum mechanics, we will look
at the Hamiltonian mechanics view of the equation of motion (EOM) of a simple pendulum
given by (38.2.12).

Hamiltonian mechanics, developed by Hamilton (1805-1865) [281], is motivated by energy
conservation [282]. The Hamiltonian H of a system is given by its total energy, namely that

H = T + V (38.3.1)

where T is the kinetic energy and V is the potential energy of the system.

For a simple pendulum, the kinetic energy is given by

T =
1

2
mv2 =

1

2m
m2v2 =

p2

2m
(38.3.2)

2For this part of the lecture, we will switch to using exp(−iωt) time convention as is commonly used in
optics and physics literatures.
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where p = mv is the momentum of the particle. The potential energy, assuming that the
particle is attached to a spring with spring constant κ, is given by

V =
1

2
κx2 =

1

2
mω2

0x
2 (38.3.3)

Hence, the Hamiltonian is given by

H = T + V =
p2

2m
+

1

2
mω2

0x
2 (38.3.4)

At any instant of time t, we assume that p(t) = mv(t) = m d
dtx(t) is independent of x(t).3

In other words, they can vary independently of each other. But p(t) and x(t) have to time
evolve to conserve energy or to keep H, the total energy, constant or independent of time. In
other words,

d

dt
H (p(t), x(t)) = 0 =

dp

dt

∂H

∂p
+
dx

dt

∂H

∂x
(38.3.5)

Therefore, the Hamilton equations of motion are derived to be4

dp

dt
= −∂H

∂x
,

dx

dt
=
∂H

∂p
(38.3.6)

From (38.3.4), we gather that

∂H

∂x
= mω2

0x,
∂H

∂p
=

p

m
(38.3.7)

Applying (38.3.6), we have5

dp

dt
= −mω2

0x,
dx

dt
=

p

m
(38.3.8)

Combining the two equations in (38.3.8) above, we have

m
d2x

dt2
= −mω2

0x = −κx (38.3.9)

which is also derivable by Newton’s law.
A typical harmonic oscillator solution to (38.3.9) is

x(t) = x0 cos(ω0t+ ψ) (38.3.10)

The corresponding p(t) = mdx
dt is

p(t) = −mx0ω0 sin(ω0t+ ψ) (38.3.11)

3p(t) and x(t) are termed conjugate variables in many textbooks.
4Note that the Hamilton equations are determined to within a multiplicative constant, because one has

not stipulated the connection between space and time, or we have not calibrated our clock [282].
5We can also calibrate our clock here so that it agrees with our definition of momentum in the ensuing

equation.
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Hence

H =
1

2
mω2

0x
2
0 sin2(ω0t+ ψ) +

1

2
mω2

0x
2
0 cos2(ω0t+ ψ)

=
1

2
mω2

0x
2
0 = E (38.3.12)

And the total energy E is a constant of motion (physicists parlance for a time-independent
variable), it depends only on the amplitude x0 of the oscillation in (38.3.10).

38.4 Schrödinger Equation (1925)

Having seen the Hamiltonian mechanics for describing a simple pendulum which is homomor-
phic to a cavity resonator, we shall next see the quantum mechanics description of the same
simple pendulum: In other words, we will look at the quantum pendulum. To this end, we
will invoke Schrödinger equation.

Schrödinger equation cannot be derived just as in the case Maxwell’s equations. It is
a wonderful result of a postulate and a guessing game based on experimental observations
[73,74]. Hamiltonian mechanics says that

H =
p2

2m
+

1

2
mω2

0x
2 = E (38.4.1)

where E is the total energy of the oscillator, or pendulum. In classical mechanics, the position
x of the particle associated with the pendulum is known with great certainty. But in the
quantum world, this position x of the quantum particle is uncertain and is fuzzy. As shall be
seen later, x is a random variable.6

To build this uncertainty into a quantum harmonic oscillator, one has to look at it from
the quantum world. The position of the particle is described by a wave function,7 which
makes the location of the particle uncertain. To this end, Schrödinger proposed his equation
which is a partial differential equation. He was very much motivated by the experimental
revelation then that p = ~k from De Broglie and that E = ~ω from Planck’s law and the
photo-electric effect. Equation (38.4.1) can be written more suggestively as

~2k2

2m
+

1

2
mω2

0x
2 = ~ω (38.4.2)

To add more texture to the above equation, one lets the above become an operator equation
that operates on a wave function ψ(x, t) so that

− ~2

2m

∂2

∂x2
ψ(x, t) +

1

2
mω2

0x
2ψ(x, t) = i~

∂

∂t
ψ(x, t) (38.4.3)

6For lack of a better notation, we will use x to both denote a position in classical mechanics as well as a
random variable in quantum theory.

7Since a function is equivalent to a vector, and this wave function describes the state of the quantum
system, this is also called a state vector.
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If the wave function is of the form

ψ(x, t) ∼ eikx−iωt (38.4.4)

then upon substituting (38.4.4) back into (38.4.3), we retrieve (38.4.2).
Equation (38.4.3) is Schrödinger equation (or the Schrödinger wave equation) in one di-

mension for the quantum version of the simple harmonic oscillator. In Schrödinger equation,
we can further posit that the wave function has the general form

ψ(x, t) = eikx−iωtA(x, t) (38.4.5)

where A(x, t) is a slowly varying function of x and t, compared to eikx−iωt.8 In other words,
this is the expression for a wave packet. With this wave packet, the ∂2/∂x2 can be again ap-
proximated by −k2 in the short-wavelength limit, as has been done in the paraxial wave
approximation. Furthermore, if the signal is assumed to be quasi-monochromatic, then
i~∂/∂tψ(x, t) ≈ ~ωψ(x, t), we again retrieve the classical equation in (38.4.2) from (38.4.3).
Hence, the classical equation (38.4.2) is a short wavelength, monochromatic approximation
of Schrödinger equation. (However, as we shall see, the solutions to Schrödinger equation are
not limited to just wave packets described by (38.4.5).)

Correspondence Principle

In the limit when ~→ 0, the quantization energy will be very small, and we expect to retrieve
the classical picture or classical mechanics. In fact, when ~ → 0, if the particle is to have
a finite amount of energy E, the frequency ω → ∞. Also, for a particle carrying a finite
momentum, k →∞ as well. Hence, the wave function ψ(x, t) becomes a very high-frequency
wave function or a wave packet. One can see that this wave packet follows the classical
equations of motion. This is known as the correspondence principle.

Wave funtions

In classical mechanics, the position of a particle is described by the variable x, but in the
quantum world, the position of a particle x is a random variable. This property needs to be
related to the wave function that is the solution to Schrödinger equation.

For this course, we need only to study the one-dimensional Schrödinger equation. The
above can be converted into eigenvalue problem, just as in waveguide and cavity problems,
using separation of variables, by letting9

ψ(x, t) = ψn(x)e−iωnt (38.4.6)

By so doing, (38.4.3) becomes an eigenvalue problem[
− ~2

2m

d2

dx2
+

1

2
mω2

0x
2

]
ψn(x) = Enψn(x) (38.4.7)

8Recall that this is similar in spirit when we study high frequency solutions of Maxwell’s equations and
paraxial wave approximation.

9Mind you, the following is ωn, not ω0.
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where En = ~ωn is the eigenvalue while ψn(x) is the corresponding eigenfunction.

The parabolic x2 potential profile is also known as a potential well as it can provide
the restoring force to keep the particle bound to the well classically (see Section 38.3 and
(38.3.8)). (The above equation is also similar to the electromagnetic equation for a dielectric
slab waveguide, where the second term is a dielectric profile (mind you, varying in the x
direction) that can trap a waveguide mode. Therefore, the potential well is a trap for the
particle both in classical mechanics or in wave physics.)

The above equation (38.4.7) can be solved in closed form in terms of Hermite-Gaussian
functions (1864) [283], or that

ψn(x) =

√
1

2nn!

√
mω0

π~
e−

mω0
2~ x2

Hn

(√
mω0

~
x

)
(38.4.8)

where Hn(y) is a Hermite polynomial, and the eigenvalues are found in closed form as

En =

(
n+

1

2

)
~ω0 (38.4.9)

Here, the eigenfunction or eigenstate ψn(x) is known as the photon number state (or just a
number state) of the solution. It corresponds to having n “photons” in the oscillation. If
this is conceived as the collective oscillation of the e-p pairs in a cavity, there are n photons
corresponding to energy of n~ω0 embedded in the collective oscillation. The larger En is, the
larger the number of photons there is. (However, there is a curious mode at n = 0. This
corresponds to no photon, and yet, there is a wave function ψ0(x). This is the zero-point
energy state. This state is there even if the system is at its lowest energy state.)

It is to be noted that in the quantum world, the position x of the pendulum is random.
Moreover, this position x(t) is mapped to the amplitude E0(t) of the field. Hence, it is the
amplitude of an electromagnetic oscillation that becomes uncertain and fuzzy as shown in
Figure 38.5.

Figure 38.5: Schematic representation of the randomness of the measured electric field.
The electric field amplitude maps to the displacement (position) of the quantum harmonic
oscillator, which is a random variable (courtesy of Kira and Koch [284]).
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Figure 38.6: Plots of the eigensolutions of the quantum harmonic oscillator. The photon-
number states are non-classical states because they do not have a classical analogue
(courtesy of Wikipedia [285]).

38.5 Some Quantum Interpretations—A Preview

Schrödinger used his equation with resounding success. He derived a three-dimensional version
of this to study the wave function and eigenvalues of a hydrogen atom. These eigenvalues En
for a hydrogen atom agreed well with experimental observations that had eluded scientists
for decades. Schrödinger did not actually understand what these wave functions meant. It
was Max Born (1926) who gave a physical interpretation of these wave functions.

As mentioned before, in the quantum world, a position x is now a random variable. There
is a probability distribution function (PDF) associated with this random variable x. This
PDF for x is related to the a wave function ψ(x, t), and it is given |ψ(x, t)|2. Then according
to probability theory, the probability of finding the particles in the interval10 [x, x + ∆x] is
|ψ(x, t)|2∆x. Since |ψ(x, t)|2 is a probability density function (PDF), and it is necessary that

� ∞
−∞

dx|ψ(x, t)|2 = 1 (38.5.1)

10This is the math notation for an interval [, ].
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The average value or expectation value of the random variable x is now given by

� ∞
−∞

dxx|ψ(x, t)|2 = 〈x(t)〉 = x̄(t) (38.5.2)

This is not the most ideal notation, since although x is not a function of time, its expectation
value with respect to a time-varying function, ψ(x, t), can be time-varying.

Notice that in going from (38.4.1) to (38.4.3), or from a classical picture to a quantum
picture, we have let the momentum become p, originally a scalar number in the classical
world, become a differential operator, namely that11

p→ p̂ = −i~ ∂

∂x
(38.5.3)

The momentum p of a particle now also becomes uncertain and is a random varible: its
expectation value is given by12

� ∞
∞

dxψ∗(x, t)p̂ψ(x, t) = −i~
� ∞
−∞

dxψ∗(x, t)
∂

∂x
ψ(x, t) = 〈p̂(t)〉 = p̄(t) (38.5.4)

The expectation values of position x and the momentum operator p̂ are measurable in the
laboratory. Hence, they are also called observables.

38.5.1 Matrix or Operator Representations

We have seen in computational electromagnetics that an operator can be projected into a
smaller subspace and manifests itself in different representations. Hence, an operator in quan-
tum theory can have different representations depending on the space chosen. For instance,
given a matrix equation

P · x = b (38.5.5)

we can find a unitary operator U with the property U
† ·U = I. Then the above equation

can now be rewritten as

U ·P · x = U · b→ U ·P ·U† ·U · x = U · b (38.5.6)

Then a new equation is obtained such that

P
′ · x′ = b′, P

′
= U ·P ·U†, x′ = U · x b′ = U · b (38.5.7)

The above can be extended to infinite dimensional linear vector spaces or Hilbert spaces.
The operators we have encountered thus far in Schrödinger equation are in coordinate

space representation.13 In coordinate space representation, the momentum operator p̂ =

11We useˆto denote a quantum operator.
12This concept of the average of an operator seldom has an analogue in an intro probality course, but it is

called the expectation value of an operator in quantum theory.
13Or just coordinate representation.
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−i~ ∂
∂x , and the variable x can be regarded as a position operator in coordinate space repre-

sentation. The operator p̂ and x do not commute. In other words, it can be shown that

[p̂, x] =

[
−i~ ∂

∂x
, x

]
= −i~ (38.5.8)

In the classical world, [p, x] = 0, but not in the quantum world. In the equation above, we
can elevate x to become an operator by letting x̂ = xÎ, where Î is the identity operator. Then
both p̂ and x̂ are now operators, and are on the same footing. In this manner, we can rewrite
equation (38.5.8) above as

[p̂, x̂] = −i~Î (38.5.9)

By performing unitary transformation, it can be shown that the above identity is space
independent: it is true in any representation of the operators.

It can be shown easily that when two operators share the same set of eigenfunctions,
they commute. When two operators p̂ and x̂ do not commute, it means that the expectation
values of quantities associated with the operators, 〈p̂〉 and 〈x̂〉, cannot be determined to
arbitrary precision simultaneously. For instance, p̂ and x̂ correspond to random variables,
then the standard deviation of their measurable values, or their expectation values, obey the
uncertainty principle relationship that14

∆p∆x ≥ ~/2 (38.5.10)

where ∆p and ∆x are the standard deviation of the random variables p and x.

38.6 Bizarre Nature of the Photon Number States

The photon number states are successful in predicting that the collective e-p oscillations are
associated with n photons embedded in the energy of the oscillating modes. However, these
number states are bizarre: The expectation values of the position of the quantum pendulum
associated these states are always zero. To illustrate further, we form the wave function with
a photon-number state

ψ(x, t) = ψn(x)e−iωnt

Previously, since the ψn(x) are eigenfunctions, they are mutually orthogonal and they can be
orthonormalized meaning that

� ∞
−∞

dxψ∗n(x)ψn′(x) = δnn′ (38.6.1)

Then one can easily show that the expectation value of the position of the quantum pendulum
in a photon number state is

〈x(t)〉 = x̄(t) =

� ∞
−∞

dxx|ψ(x, t)|2 =

� ∞
−∞

dxx|ψn(x)|2 = 0 (38.6.2)

14The proof of this is quite straightforward but is outside the scope of this course.
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because the integrand is always odd symmetric. In other words, the expectation value of the
position x of the pendulum is always zero. It can also be shown that the expectation value
of the momentum operator p̂ is also zero for these photon number states. Hence, there are
no classical oscillations that resemble them. Therefore, one has to form new wave functions
by linear superposing these photon number states into a coherent state. This will be the
discussion in the next lecture.
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